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The investigation concerns the stability of an incompressible second-order fluid 
(visco-elastic) film flowing down an inclined plane under gravity with respect to 
two-dimensional disturbances. When the elastic parameter is negative as in the 
case of a solution of polyisobutylene in cetane, surface disturbances (‘soft’ 
waves) are found to be unstable. The analysis in this case also reveals the existence 
of growing shear waves (‘hard’ waves) which are highly damped in ordinary 
Newtonian fluids. 

1. Introduction 
The problem of the stability of the laminar flow of an ordinary viscous liquid 

film flowing down an inclined plane under gravity was formulated by Yih (1955) 
who solved the stability equation numerically. Using his formulation, Benjamin 
(1957) gave an analytical solution for the neutral stability curves for the same 
problem by a power expansion technique. For a vertical plate, his values for the 
wave speed were found to be in good agreement with the experimental values 
of Binnie (1957). Both these investigations reveal the occurrence of instability 
at small Reynolds numbers. In view of certain inaccuracies in Yih’s (1955) 
results and the extremely laborious nature of Benjamin’s (1957) power expansion 
method, Yih (1963) presented a simple perturbation technique (for the same 
problem) which furnished information regarding the stability of the flowing 
film for the cases of small wave-numbers, small Reynolds numbers and of large 
wave-numbers. He also discussed shear-wave stability for these three cases and 
showed that when the inclination of the plate with the horizontal is not very 
small, these waves are strongly damped. Quite recently, Yih (1965) has used the 
same technique for studying the stability of a non-Newtonian inelastic fluid 
film whose constitutive equation is triply non-linear. However, his solution for 
long waves is confined to surface-wave instability only and is valid for small 
values of the non-Newtonian parameter. 

The present investigation is taken up for several reasons. First, we have studied 
the stability of a film of liquid (flowing under gravity) based on a model of a 
non-Newtonian liquid which in addition to cross-viscosity displays elastic 
properties. When a visco-elastic fluid flows, a certain amount of energy is stored 
up in the material as strain energy in addition to dissipation of heat due to vis- 
cosity. Thus it may be expected that stability characteristics of the flow of such 
a fluid will be influenced by its elastic properties. 
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Secondly, it  may be of some interest to discuss instability of shear waves in 
such fluids in addition to that of the surface waves. In the sequel, it  is shown that 
for negative values of the elastic parameter the shear waves become unstable. 

Thirdly, the present analysis provides a basis for experiments on the stability 
and other characteristics of visco-elastic liquids. For instance, it  is shown that 
from the critical Reynolds number determined experimentally, the value of the 
elastic constant in the constitutive equation may be estimated. 

The perturbation technique of Yih (1963) will be followedin the present analysis 
and the result is valid for all values of the elastic parameter. 

2. A mathematical model for visco-elastic fluids 
No11 (1958) defined an incompressible simple material as a substance whose 

density remains constant and whose stress is determined, to within an arbitrary 
hydrostatic pressure, by the history of the strain. This substance is called a 
simple fluid, if it  has the characteristic that all local states are equivalent in 
response, with all observable differences in response being due to definite differ- 
ences in history. For any history g(s),  a retarded history g,(s) can be defined as 

g,(s) = y(as)  (0 < s < co, 0 < a < l), (2.1) 

cc being termed as retardation factor. In addition to these propert’ies, assuming 
that the stress is more sensitive to recent deformations than to deformations in 
the distant past (postulate of gradually fading memory) Coleman & No11 (1960) 
showed that the theory of simple fluids leads to that of perfect fluids as a + 0 
and that of Newtonian fluids as a correction of order a to the theory of perfect 
fluids. Based on these ideas, they derived the following equation for an isotropic 
fluid which includes corrections for visco-elastic effects to O(a2) 

8 i j + ~ a i j  = ~o’(l)ij+P’(,,ik’(l)kj+?/A(z)ii, (2.2) 

where Sij  is the stress tensor, p is an indeterminate pressure (and no longer the 
mean pressure) ‘and q0, ,8 and y are material constants. The tensors A(N)ij known 
as Rivlin-Ericksen tensors (1955) are connected with the rate-of-strain tensor 

by the following recursion formulae: 

A(l)ij = vi,j +vj,i, (2.3) 

A,), = A(,-l)ik~k,i+A,-l)ikvk,i+AW-I)ij, (2.4) 

where the over dot denotes the material time derivative. In  (2.2), the term con- 
taining p arises out of cross-viscosity while the last term accounts for the elastic 
properties of the fluid. Using (2.3) and (2.4), the acceleration gradient term 

in (2.2) is given by 
A(2) ij = j + aj, i + 2em, i em, j t  (2.5) 

where ai are the components of acceleration and are given by avilat + V ~ V ~ , ~ .  

It has been reported by Markovitz & Coleman (1964) that a 5.4 yo solution of 
polyisobutylene in cetane at 30°C obeys the relation (2.2) and Markovitz & 
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Brown (see Markovitz & Coleman 1964) found the following values from normal 
stress measurements for this fluid 

ro = 18.5P, p = 0.773g/cm3, p = l.Og/cm, y = -0*2g/cm. (2.6) 

The constitutive equation (2.2) will be used in our analysis. Of course, this 
equation will be valid only if the shearing rates are not too large. 

3. Mathematical formulation and the stability analysis 
A layer of a visco-elastic liquid of thickness d flows down a plane (figure 1) 

inclined at an angle Po to  the horizon. The steady primary flow is taken parallel 
to the 2,-axis with the x,-axis normal to the plate downwards, the origin being 
taken at the undisturbed free surface. The x3-axis normal to the xl- and x,-axes 
is not shown in the figure. 

Fig. 1. A sketch of the physical problem. 

The equations of momentum and continuity are 

p(av,/at + vj av,/ax,) = asij/axj fpx,, (3.1) 
aqax, = 0, (3.2) 

where Xi are the components of force due to gravity and Sij is given by (2.2). 
The primary flow is steady and unidirectional and the velocity depends on 

x, only. Using the superscript 0 to denote various quantities for this flow, (3.1) 
gives 

- 

where use is made of (2.2), (2.3) and (2.5). From the above equations it follows 
that 

Since S,, = 0 at the free surface, (2.2) gives 

at the free surface so that K in (3.6) is zero. The velocity distribution is now ob- 

-Po+ (p+ 3y) (dv!/dx2)2 = 0 

tained from (3.3) as wi(x2) = py sinp0(d2- xi)/27, (3.7) 
2-2 
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satisfying the no-slip condition v! = 0 at x,  = d and the stress free condition 
S,, = 0 at the free surface x2 = 0. It is of some interest to note that the primary 
velocity is affected neither by cross-viscosity nor by elasticity. These effects 
manifest themselves only in modifying the pressure distribution. 

In  our stability analysis we shall assume the validity of Squire's theorem, viz. 
the two-dimensional disturbances are more unstable than the three-dimensional 
ones. This enables us to restrict consideration to two-dimensional perturbations 
only. In  fact, Binnie's (1957) experiments with vertical water films showed 
that the waves at small Reynolds numbers were approximately uniform along 
the horizontal line of their crests. This two-dimensional na;ture of surface 
waves (roll waves) may therefore be expected to hold good for visco-elastic 
liquids also. 

We take the physical variables in the perturbed state as 

v1 = vp+ul, v, = u,, p = pO+P. (3.8) 
Substituting these in (3.1), (3.2) and using (3 .2 )  and (2.5), we obtain after 
linearization, the following equations 

p -+vp--1+u2- (2 au ax, ax, dvp )  

(3.10) 

au,/ax, + au21ax, = 0. (3.11) 

Introducing the dimensionless variables 

(3.12) 

and eliminating P from (3.9) and (3.10), the following equation is obtained after 
using (3.7) 

u = u1qo/d2pg sin Po, v = u,T0/d2pg sin Po, 
r = tdpg sin2po/qo, x = xl/d, y = x2/d, 

i a  
= 

(3.13) 
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where M = y/dSp, R = d3p2gsin/30/~i. (3.14) 

Further, (3.11) reduces to 
au/ax+ avpy = 0, 

which permits the use of a stream function @ defined by 

u = a@/ay, v = -a@lax. 

(3.15) 

(3.16) 

Assuming @ = $(y) eia(.z-c.r) (3.17) 

and substituting in (3.13) the following equation is derived 

4[( - a2 + ia3cMR) $“ - i ia3MR d{( 1 - y2)  $’}/dy + iaRM d( y$”)/dy] 

+ [( 1 - iacMR) (gP + 2a24” + a”) + iiaRM d2{ (1 - y2)  ( $ r r  + a2$)}/dy2 

+ +ia3RM( 1 - y2) (9” +a,$) - 2iaRM d2{y$’(y)}/dyz 

- 2ia3RMy$’(y) +iaRM(q5”+a24)] 

= iaR[{$( 1 - y2) - C }  ($“ - a’$) + $1. (3.18) 

This is the Orr-Sommerfeld equation modified to take account of elastic 
properties of the fluid. The boundary conditions at the inclined plane are 

u = v = 0  at y = l ,  

and in terms of 4 these conditions are 

$’(1) = 0, $(1) = 0. (3.19) 

The conditions a t  the free surface are complicated since they are to be applied 
at the perturbed surface rather than at y = 0. Let 7 = be the (dimensional) 
displacement of the free surface from its mean position so that the kinematic 
condition at  the free surface is 

+ VO,(O)  a7/axl = u,. 

In  terms of non-dimensional variables, the above equation can be written as 

a g p +  i(ag/ax) = v 

at the free surface. Assuming t; - eia(z-cT)and using (3.16) and (3.17), the foregoing 
equation gives 

(3.20) 

Again at the free surface the shear stress vanishes and the normal stress just 
balances that due to surface tension. 

Using (3.2) and (2.5), the shear stress at the free surface due to the perturba- 
tion motion is given by 

E = [#(o)/c‘] eia(x-cT), c’ = c - 1 2‘ 

where the last term gives the effect of the variation in the mean shear due to the 
deviation of the free surface from its mean position. For applying the boundary 
condition S;, = 0 at the free surface, it  will be only necessary to evaluate the first 
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three terms on the right-hand side of (3.21) at y = 0. Upon using (3.16), (3.17) 
and (3.20), this boundary condition in a dimensionless form reduces to 

( l - - R i a ~ ’ M ) { # ’ ’ ( 0 ) + ~ ~ ~ # ( 0 ) ) +  ( iaMR-  l/c’)#(O) = 0. 

Again using (2.2)) (2.5) and linearizing, we have the following condition 
normal stress at  the free surface 

(3.22) 

on the 

(3.23) 

where T is the surface tension (assumed constant) and P is the perturbation pres- 
sure. In  this equation, apart from the terms involving 7, all the other terms are 
to be evaluated at y = 0. Assuming the ( x , ~ )  dependence of the dimensionless 
pressure P7:/p3gd4 as eidZ+) (cf. equation (3.17)), P can be eliminated from (3.9) 
and (3.23). Using (3.12), (3.16) and (3.17), the result of this elimination can be 
put in the following dimensionless form 

(1 - RMiac’) #”’(O) + [3iMa3c’R - 2iaMR + iac’R - 3a2] #’(O) 

+ [ia cot + ia3SR/c‘ + i aRM]  #(O) = 0, (3.24) 

where S = Tqi/p3g2d5sin2/3,. This is the final form of the boundary condition on 
the normal stress. Equation (3.18) and the boundary conditions (3.19), (3.22) 
and (3.24) constitute an eigenvalue problem. For a non-trivial solution a 
relation 

c = c(R, M ,  a,  S )  

must hold good among R, M ,  S ,  a and C. From this relation, the curves of neutral 
stability given by ci = 0 (where c = c,+ ic,) can be plotted. 

4. Solution for long waves 
We consider disturbances of wavelengths large compared with the depth ti!. 

In  this case a is small and a solution of the differential system can be found by 
successive approximation with a as a small parameter. It can be seen from (3.18) 
that on putting a (or R) equal to zero, the order (fourth) of the equation is not 
diminished for any M .  The eigenfunction is also an entire function of a, R and 
M as can be seen by solving (3.18) in a power series and considering its conver- 
gence for finite values of a)  R and M .  Further, the boundary conditions are also 
not singular in a, R or M if they are finite. Thus unlike the singular perturbation 
problem associated with the Orr-Sommerfeld equation for very large R, we have 
here a regular perturbation problem for small a (or small R) for which a uniformly 
valid solution can be found. 
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Thus, for the first approximation $, (with eigenvalue c; = cl-&) we put 
a = 0 in (3.18) and the boundary conditions. Hence 

&(Y) = 0 (4.1) 

&(1) = 07 = 0, = $l(o)/c;, $ q ( O )  = 0. (4.2) 

These give $,(y) =(1 -y)2, c; = & or c1 = 1, (4.3) 

subject to 

where the arbitrary constant in $,( y )  is taken to be unity without lossof generality. 
This shows that a = 0 is a part of the neutral stability curve. To see how the 
eigenvalue c is modified as a increases from zero, we consider the second approxi- 
mation $2. Correct to  O(a) ,  this equation can be obtained from (3.18) as 

$~+~iaMRd2{ (1 -y2 )$ ' ; } /dy2 -2MiaRd2{y$; (y ) } /dy2+iaMR~~ 

+ 4MiaR d(y@;)/dy = iaR[{&( 1 - y2)  - cI} qi + $11, (4.4) 

which upon substitution from (4.3) becomes 

$2 = - 2iaR.y. (4.5) 

Along with the no-slip conditions $2( 1) = 0 and $;( 1) = 0, $2 has to satisfy (3.22) 
and (3.24) which, correct to O(a), can be written as 

&(O) + [iMRia - MRiac,] $ ; ( O )  + iaMR$,(O) - #2(0)/~; +Ac$l(0)/c;2 = 0 (4.6) 

and 
$'l(O) = BMR~E$;(O)-MR~~$,(O) - Riac;$;(O) -iacotp,$,(O)/C;. (4.7) 

In  (4.6), Ac stands for the change in c; as a deviates from zero. It may be noted 
that although the first-order approximation given by (4.3) does not contain 
the elastic parameter M, the second approximation 4, includes M through the 
boundary conditions (4.6) and (4.7). Solution of (4.5) subject to the aforemen- 
tioned boundary conditions gives 

Ac = ia(&R-Qcot/3,-:RM). (4.8) 

This shows that while ci = 0 a t  a = 0, ci will increase or decrease as a increases 
from zero, according as 

Thus the neutral stability curve in the (a, R)-plane has a bifurcation point at 
a = 0,  R = R, where R, is given by 

R: 10~0t/?O/(4-25M). (4.9) 

R, = lO~ot/3,/(4-25M), (4.10) 

which agrees with Yih's (1963) result for M = 0. From (2.6) and (3.14) it is clear 
that for a solution of polyisobutylene in cetane M < 0, which shows that the 
critical Reynolds number is less than the corresponding value for an ordinary 
viscous fluid. Using (2.6) and (4.10), the critical Reynolds number, for a film of 
thickness 2 cm of this fluid flowing down a plane with Po = in, is roughly 1.778 
while for an ordinary viscous fluid this value is 2.5. It is also clear from (4.10) 
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that the bifurcation point shifts towards the origin in the (a, R)-plane as IMI 
increases and Re becomes zero at Po = in (vertical plate). This shows that for 
such a fluid, the elastic effects are destabilizing. The opposite will be true 
for a fluid with M > 0. However, from thermodynamic consideration it can 
be shown that M < 0 as discussed by Markovitz & Coleman (1964). It may 
be pointed out that (4.10) serves as a basis for estimating M (and therefore y )  
for a given inclination Po when Re is experimentally determined. 

We can also discuss the stability characteristics for small R. This will also be a 
regular perturbation problem since the order of (3.18) is not diminished by put- 
ting R = 0. In  this case, the first approximation #, will satisfy 

$q - 2aZ@; + a4#, = 0 (4.11) 

subjectto &(1) = 0, $,(1) = 0, #i(0)+(a2- l/c;)#,(O) = 0 (4.12) 

and - (ia/c;) (cotPo + Ra2S) $, (O)  + 3a2$;(0) - &'(O) = 0, (4.13) 

where SR is independent of viscosity qo. The solution of (4.11) is 

$1 = L, eay  + ik', e-ay + N ,  y emu + Ply e-ay. (4.14) 

This gives after using (4.12) and (4.13) 

c; = [l +i(2a-sinhZa) (cot/3,+ RazX)/2a2]/(1+ cosh2a+2a2). 

This shows that for Po = in and X = 0, c;, is real so that R = 0 is a part of the 
neutral stability curve even in a visco-elastic liquid. The higher-order approxima- 
tions will be affected by M and can be carried out exactly as before without any 
difficulty. From a physical point of view, the instability of a vertical film a t  all 
R (including R = 0) arises from the fact that in the absence of the stabilising 
influence of Po + +n and surface tension, disturbances grow at the expense of 
the strain energy of the elastic elements as well as of the energy of the gravity 
field. 

5. Shear wave instability 
So far we have restricted our attention to surface waves only as distinct from 

shear waves which occur in confined flows a t  large values of R. These waves 
(surface waves) are found to be unstable for small Reynolds numbers. Elastic 
properties of the fluid tend to make these waves even more unstable. It will be of 
some interest to study the stability of shear waves in such fluids. In  ordinary 
viscous fluids, however, these waves have been shown to be highly damped for 
small Reynolds numbers or small wave-numbers and stability characteristics 
are governed by surface waves as shown by Yih (1963). 

We first consider the stability of Poiseuille flow of a visco-elastic liquid between 
two parallel plates for the following two cases: (1) small Reynolds number for 
any a; ( 2 )  small wave number for any finite R. As the flow of the liquid down 
an inclined plane is one half of a plane Poiseuille flow, it will be of interest to 
see whether the shear waves are amplified or damped in a plane Poiseuille flow. 
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Case 1. Here we assume R < 1 but Rc is not small. In this case, (3.18) reduces to 

( 0 2 - a 2 )  ( 0 2 - / ? ? ) $  = 0, (5.1) 

/3: = a'+iaRc/(XiaRc- 1).  (5.2) 

$( f- 1) = 0, $'( & 1 )  = 0. (5.3) 

where D = d/dy and p1 is given by 

With the plates at y = f- 1, the boundary conditions are 

The assumption that Rc is not small is necessary otherwise c will completely 
drop out of the differential system and we shall not have a non-trivial solution. 

The even solution (antisymmetric mode) of (5.1) is 

$ = A cosh a y  + B coshP,y, 

p1 tanhp, 5 a tanh a. 
which with (5.3) leads to 

(5.4) 

Putting Bl = yli, the above equation becomes 

y1 tan y1 = -a! tanh a. (5 .5 )  

This equation has an infinite number of real roots yln (n = 1,2, .. .) at a distance 
n- apart asymptotically so that, from (5.2), the corresponding eigenvalues c, 
are given by 

Rc, = - i(y:, + a2)/a[l + M(y:, + (5.6) 

Since M < 0, for wave-numbers satisfying IMI (y?, + a2) > 1 the coefficient of i 
on the right-hand side of (5.6) is positive. Thus even at  small Reynolds numbers, 
the shear waves are amplified. The assumption that Rc is not small is, of course, 
consistent with (5.6). 

Case 2. Here we assume a < 1 but ac is not small. The governing equation is 

(5.7) 

where b2 = - iacR/( 1 - iMRac). ( 5 4  

$(y) = A1 + B1 cash by, 

@V - b2$" = 0, 

The even solution of (5.7) can be taken as 

which with the boundary conditions $'( k 1)  = 0 leads to sinh b = 0, i.e. b = nni. 
Hence from (5.8), the eigenvalues c, are given by 

c, = -in27P/aR(Mn2n2+ l), (5.9) 

and for 1Mln2n2 > l ( M  < 0) ,  the coefficient of i in the above equation becomes 
positive, again leading to instability. The odd solution of (5.7) subject to 
$( f- 1) = 0 will also lead to similar results. However, the disturbances come- 
sponding to the even solution can be shown to be more unstable than those due to 
the odd solution. 

Thus in plane Poiseuille flows, shear waves are amplified when M < 0 even 
at small R. It is, therefore, expected that these waves are also unstable in a film 
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flow. However, in view of the complex nature of the boundary conditions at the 
free surface, we shall use an integral method for the case of small R. 

When R < 1 but Rc is not small, the governing differential equation is (5.1), 
which can be written as 

(0, - $ [iaRc/(MiaRc - I)] (0, - a2) $, (5.10) 

subject to the no-slip conditions (3.19) and the normal-stress condition (3.24) 
at the free surface. Letting R + 0 and c (or c') -+ co (since Rc is finite), the free- 
boundary condition (3.22) for the tangential stress becomes 

$"(O)  +a2$(0) = 0. (5.11) 

Multiplying (5.10) by $* (complex conjugate of (p) and integrating between 0 
and 1, we obtain, after using (3.19), 

- (p*(o) $yo) + +'*(o) (pya) + I ,  + 2ay*(o)  $yo)  + 2a24 + a41, 

= [iaRc/(l -MiaRc)] [$*(0)$ ' (0)+I l+a210] ,  (5.12) 

where 

Again letting R --f 0 and c' -+ co in (3.24), we obtain 

@'/(O) - 3a2$'(0) = iaRc$'(O)/(MiaRc- 1). (5.14) 

Elimination of $"(O) between (5.12) and (5.14) and subsequent use of (5.11) 
lead to 

I, + 2a24 + a410 - a,[$( 0) $'*(O) + $*( 0) 4' ( O ) ]  

= [iaRc/(l-  MiaRc]) [Il+a2I0]. (5.15) 

Since 

we can write (5.15) as 

m) $'*(O) + $*(O)  $ ' (O)  = 2 4  +so' [$"*$ + $"$*I dY, 

(5.16) 

The right-hand side of (5.16) is positive definite, for otherwise 

$1' - $4 = 0 

and its solution 

cannot satisfy $(1) = $'(1) = 0 non-trivially. 

that c, = 0 and 

$ = A ,  cosh ay + B, sinh ay 

Letting c = c, + ic, and equating real and imaginary parts of (5.16), we find 

This means that for any a ( > 0) 

(5.17) 

c,(MaRc,+ 1)-1 < 0. (5.18) 
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For M = 0,  (5.18) clearly implies ci < 0 so that shear-wave disturbances are 
damped in ordinary viscous liquids (cf. Yih (1963)). However, for a visco-elastic 
liquid M < 0 and (5.18) is valid with ci > 0 for a suitable range of wave-numbers. 
This implies the instability of shear-wave disturbances. 

For small wave-numbers, we can obtain more definite results. In  this case we 
assume that although a < 1, ac is not small. The governing differential equation 
in this case is (5.7) subject to the no-slip conditions (3.19) whiIe the other two 
boundary conditions become 

d”(0) = 0,  b2#’(0)-p(O) = 0, (5.19) 

where b is defined by (5.8). 
The solution of (5.7) can be written ass 

$(y)  = A3+B3y+C,eby+D,e-bv, (5.20) 

which gives after using the above boundary conditions 

A ,  = 2D3eb, B, = 0, C, = -D,, eb+e-b = 0. (5.21) 

The last condition in (5.21) implies 2b = (2% + 1) ni and this gives from (5.8) 

4iaRc = (1 - MRiac)  (2n + 1)2 7 ~ 2 .  (5 .22)  

-Rc,a[M(Zn+ 1 ) 2 ~ 2 + 4 ]  = (2n+1)’n2. (5.23) 

For llMl(2n+ 1)2n2 > 4 and since M < 0, this shows that (ci > 0) .  leading to un- 
stable shear waves whose growth rates are aci. From (5.23), the assumption 
that ac is not small is justified a posteriori. 

Equating its real part, 

6. Discussion 
The present investigation shows that, for an incompressible second-order 

fluid flowing down an inclined plane, surface wave instability sets in at  a critical 
Reynolds number smaller than the corresponding value in an ordinary Newton- 
ian fluid. Thus the second-order effects are destabilising. On the other hand, the 
shear waves become unstable at any Reynolds number. Thus in film flow of 
such fluids the instability is governed by shear waves rather than surface waves 
and this is contrary to the corresponding result in an ordinary viscous fluid. 
Physically this instability may be explained as follows. When the flow of such a 
fluid (visco-elastic) down a plane is subject to a disturbance, the shear on an 
element of the fluid is reversed a t  such a frequency that the elastic stresses 
cannot relax. This results in a decrease in dissipation of the energy of the distur- 
bance, part of the energy being stored in the element as strain energy. Thus we 
may expect instability in flows of such fluids. However, it should be noted that 
the above-mentioned elastico-viscous properties refer to the bulk of the fluid 
and are distinct from those of a free surface of a fluid in which some contaminants 
or surface active agents (surfactants) are present. These surfactants ascribe to 
the surface both viscous and elastic properties. In  the absence of mass transfer 
between the surface and the bulkof the fluid, the surface tension is connected with 
the dilatational deformation and this explains surface elasticity. It has been 
shown by Levich (1962) and Berg & Acrivos (1965) that this surface elasticity 
is stabilizing because it tends to suppress wave formation contrary to our results. 
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Finally, we make a few remarks about the suitability of the model of the 
second-order fluid as representing the actual behaviour of elastico-viscous fluids. 
A serious shortcoming of this model is that it  fails to exhibit gradual stress 
relaxation generally observed in elastico-viscous fluids despite the fact that it  
accounts for shear dependent viscosity and normal stress effects. When the 
tensors A~,,,, (N = 1,2) (defined earlier) in the constitutive equation of this 
fluid vanish, it  is clear that the stress cannot change in time but tends to the 
hydrostatic pressure precipitously. It is indeed true that second-order fluids 
exhibit retarded response to applied stresses, but the normal-stress differences 
in such fluids do not correspond to a simple tension along the streamlines. Despite 
these shortcomings, Truesdell ( 1965) has recently given some rationalization 
for using the model of the second-order fluid as representing the behaviour of an 
elastico-viscous fluid. He has defined a fluid with ‘ convected elasticity’ as one in 
which the stress is a function of the strain of the present configuration with 
respect to one occupied by the fluid at a certain fixed time t* before the present 
time, t* being called the response time. He has further shown that in viscometric 
or shear flows, a second-order fluid is indistinguishable from a fluid with ‘con- 
vected elasticity’ with response time t* = - 2y/71,,. Hence in order that t* may 
be positive (since stress depends on the past and not on the future) y must be 
negative. Markovitz & Coleman (1964), however, have established the negative- 
ness of y from thermodynamic considerations. In  the present problem we have 
studied the stability of a basic shear flow. Hence from the foregoing considera- 
tions of Truesdell we may expect that the second-order fluid model will be a 
reasonably good approximation to an elastico-viscous fluid. Further we can 
anticipate on physical grounds that elastic properties of a fluid are brought out 
more clearly in an unsteady flow (such as the unsteady perturbed two-dimen- 
sional flow in the present stability analysis) than in a steady flow. 

The basic nature of the instability of second-order fluids has also been discussed 
by Coleman, Duffin & Mizel (1965). It is not yet known whether the growth of 
linearized disturbances will be limited by a breakdown in the fluid model, approxi- 
mation or by other non-linear effects. 
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